skip to main content


Search for: All records

Creators/Authors contains: "Kilpatrick, Auston Marm"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The persistence of populations declining from novel stressors depends, in part, on their ability to respond by trait change via evolution or plasticity. White‐nose syndrome (WNS) has caused rapid declines in several North America bat species by disrupting hibernation behaviour, leading to body fat depletion and starvation. However, some populations ofMyotis lucifugusnow persist withWNSby unknown mechanisms.

    We examined whether persistence ofM. lucifiguswithWNScould be explained by increased body fat in early winter, which would allow bats to tolerate the increased energetic costs associated withWNS. We also investigated whether bats were escaping infection or resistant to infection as an alternative mechanism explaining persistence.

    We measured body fat in early and late winter during initialWNSinvasion and 8 years later at six sites where bats are now persisting. We also measured infection prevalence and intensity in persisting populations.

    Infection prevalence was not significantly lower than observed in declining populations. However, at two sites, infection loads were lower than observed in declining populations. Body fat in early winter was significantly higher in four of the six persisting populations than duringWNSinvasion.

    Physiological models of energy use indicated that these higher fat stores could reduceWNSmortality by 58%–70%. These results suggest that differences in fat storage and infection dynamics have reduced the impacts ofWNSin many populations. Increases in body fat provide a potential mechanism for management intervention to help conserve bat populations.

     
    more » « less